Mineração de dados: o papel da IA durante a pandemia da COVID-19

Autores

DOI:

https://doi.org/10.52641/cadcajv9i5.608

Palavras-chave:

COVID-19, Mineracão de Dados, Inteligência Artificial, Pandemia

Resumo

O presente artigo realiza a descrição da pandemia causada pela COVID-19 e os impactos que a mesma trouxe para o mundo, ressaltando o papel que a mineração de dados e inteligência artificial tiveram durante esse período e os para os próximos possíveis acontecimentos. Para isso, o artigo realiza a revisão da literatura, trazendo a evolução da COVID-19, sua taxinomia e patogênese. Posteriormente, realizamos uma visita a literatura sobre mineração de dados, descrevendo o processo de descoberta de conhecimento em bases dados, como é realizado esses processos e quais são os passos necessários. Dentro desse contexto, os autores descrevem casos de uso de estudos que realizar o uso de algoritmos de inteligência artificial para triar e diagnosticar pacientes e que auxiliaram na análise genômica do vírus e desenvolvimento de novos medicamentos.  Desta forma, esse trabalho destaca a importância das tecnologias de IA na resposta a crises sanitárias, sugerindo seu potencial para enfrentar desafios futuros na saúde pública.

 

Biografia do Autor

Marcos Vinicius Rossetto, Universidade de Caxias do Sul

Graduação em Sistemas de Informação pela Universidade de Caxias do Sul (UCS). Mestre em Biotecnologia pela Universidade de Caxias do Sul (UCS) e Doutorando em Biotecnologia pela Universidade de Caxias do Sul (UCS). E-mail: [email protected]

Ivaine Sartor, Universidade de Caxias do Sul

Graduação em Licenciatura e Bacharelado Em Ciências Biológicas pela Universidade de Caxias do Sul (UCS). Mestrado em Ciências Biológicas pela Universidade Federal do Rio Grande do Sul (UFRGS) e Doutorado em Genética e Biologia Molecular pela Universidade Federal do Rio Grande do Sul (UFRGS). E-mail: [email protected]

Scheila de Avila e Silva, Universidade de Caxias do Sul

Graduação em Ciências Biológicas pela Universidade de Caxias do Sul (UCS). Mestrado em Computação Aplicada pela Universidade do Vale do Rio dos Sinos (UNISINOS) e Doutora em Biotecnologia pela Universidade de Caxias do Sul (UCS). E-mail: [email protected]

Referências

AHMED, I.; JEON, G. Enabling Artificial Intelligence for Genome Sequence Analysis of COVID-19 and Alike Viruses. Interdisciplinary Sciences: Computational Life Sciences, 6 ago. 2021.

AHOUZ, F.; GOLABPOUR, A. Predicting the incidence of COVID-19 using data mining. BMC Public Health, v. 21, n. 1, 7 jun. 2021.

AMOUTZIAS, G. D. et al. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, v. 14, n. 1, p. 78, 2 jan. 2022.

BEWICK, V.; CHEEK, L.; BALL, J. Statistics review 13: Receiver operating characteristic curves. Critical Care, v. 8, n. 6, p. 508, 2004.

CAUDAI, C. et al. AI applications in functional genomics. Computational and Structural Biotechnology Journal, v. 19, p. 5762–5790, 2021.

DALL’ALBA, G. et al. A Survey of Biological Data in a Big Data Perspective. Big Data, 7 abr. 2022.

DE LIRA, J. M. et al. Promoção da Saúde na Pandemia: impacto da Covid-19 na prática da Enfermagem na ESF. Cadernos Cajuína, v. 9, n. 4, p. e249424–e249424, 8 ago. 2024.

DE WIT, E. et al. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, v. 14, n. 8, p. 523–534, 27 jun. 2016.

DIMASI, J. A.; GRABOWSKI, H. G.; HANSEN, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of health economics, v. 47, n. 47, p. 20–33, maio 2016.

ECDC. Factsheet on COVID-19. Disponível em: <https://www.ecdc.europa.eu/en/infectious-disease-topics/z-disease-list/covid-19/factsheet-covid-19>.

ENVALL, M. On the difference between mono-, holo-, and paraphyletic groups: a consistent distinction of process and pattern. Biological Journal of the Linnean Society, v. 94, n. 1, p. 217–220, 29 abr. 2008.

FAZOLO, T. et al. Pediatric COVID-19 patients in South Brazil show abundant viral mRNA and strong specific anti-viral responses. Nature Communications, v. 12, n. 1, p. 6844, 25 nov. 2021.

FORCHETTE, L.; SEBASTIAN, W.; LIU, T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Current Medical Science, v. 41, n. 6, 9 jul. 2021.

GNS, H. S. et al. An update on Drug Repurposing: Re-written saga of the drug’s fate. Biomedicine & Pharmacotherapy, v. 110, p. 700–716, fev. 2019.

GOODMAN, B.; FLAXMAN, S. European Union Regulations on Algorithmic Decision-Making and a “Right to Explanation”. AI Magazine, v. 38, n. 3, p. 50–57, 2 out. 2017.

GORBALENYA, A. E. et al. The Species Severe Acute Respiratory syndrome-related Coronavirus: Classifying 2019-nCoV and Naming It SARS-CoV-2. Nature Microbiology, v. 5, n. 4, p. 1–9, 2 mar. 2020.

HALLAL, P. C. et al. SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys. The Lancet Global Health, v. 8, n. 11, p. e1390–e1398, nov. 2020.

Handbook of Statistical Analysis and Data Mining Applications. Disponível em: <https://books.google.com.br/books?hl=en&lr=&id=U5np34a5fmQC&oi=fnd&pg=PP1&dq=Nisbet>. Acesso em: 3 set. 2024.

HELMY, Y. A. et al. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. Journal of Clinical Medicine, v. 9, n. 4, p. 1225, 24 abr. 2020.

HEMINGWAY, H. et al. Big data from electronic health records for early and late translational cardiovascular research: challenges and potential. European Heart Journal, v. 39, n. 16, p. 1481–1495, 29 ago. 2017.

Introduction to Artificial Intelligence. Disponível em: <https://books.google.com.br/books?hl=en&lr=&id=geFHDwAAQBAJ&oi=fnd&pg=PR5&dq=ERTEL>. Acesso em: 3 set. 2024.

JAHANAFROOZ, Z. et al. An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene, v. 808, p. 145963, jan. 2022.

JOSHI, A. V. Machine Learning and Artificial Intelligence. [s.n.].

KADAM, S. B. et al. SARS‐CoV‐2, the pandemic coronavirus: Molecular and structural insights. Journal of Basic Microbiology, v. 61, n. 3, p. 180–202, 18 jan. 2021.

KARUNAKARAN, V. et al. A non-invasive ultrasensitive diagnostic approach for COVID-19 infection using salivary label-free SERS fingerprinting and artificial intelligence. Journal of Photochemistry and Photobiology B-biology, v. 234, p. 112545–112545, 1 set. 2022.

KIRTIPAL, N.; BHARADWAJ, S.; KANG, S. G. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infection, Genetics and Evolution, v. 85, p. 104502, ago. 2020.

KOHAVI, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. [s.n.]. Disponível em: <https://core.ac.uk/download/pdf/186743801.pdf>.

KUMAR, M. et al. Opportunities and challenges in application of artificial intelligence in pharmacology. Pharmacological Reports, v. 75, n. 1, p. 3–18, 9 jan. 2023.

LEVI, M. et al. Coagulation abnormalities and thrombosis in patients with COVID-19. The Lancet Haematology, v. 7, n. 6, p. e438–e440, jun. 2020.

LIANG, W. et al. Early triage of critically ill COVID-19 patients using deep learning. Nature Communications, v. 11, n. 1, p. 3543, 15 jul. 2020.

LIPSITCH, M.; SWERDLOW, D. L.; FINELLI, L. Defining the Epidemiology of Covid-19 — Studies Needed. New England Journal of Medicine, v. 382, p. 1194–1196, 19 fev. 2020.

LU, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, v. 395, n. 10224, p. 565–574, jan. 2020.

MARTINEZ, G. et al. An artificial neural network classification method employing longitudinally monitored immune biomarkers to predict the clinical outcome of critically ill COVID-19 patients. PeerJ, v. 10, p. e14487, 2022.

METZ, C. E. Basic principles of ROC analysis. Seminars in Nuclear Medicine, v. 8, n. 4, p. 283–298, out. 1978.

MOHANTY, S. et al. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, v. 14, n. 5, p. 1027–1031, set. 2020.

MORAES, P. Compressão de modelos em transferência de aprendizado de máquina. 11 fev. 2022.

MUELLER, J. P.; MASSARON, L. Aprendizado de Máquina por John Paul Mueller e Luca Massaron. [s.l: s.n.]. Disponível em: <https://altabooks.com.br/wp-content/uploads/2019/11/AMOSTRA_AprendizadoMaquinaPL.pdf>.

MURALIDAR, S. et al. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie, v. 179, n. 179, p. 85–100, dez. 2020.

NAVECA, F. G. et al. Spread of Gamma (P.1) Sub-Lineages Carrying Spike Mutations Close to the Furin Cleavage Site and Deletions in the N-Terminal Domain Drives Ongoing Transmission of SARS-CoV-2 in Amazonas, Brazil. Microbiology Spectrum, v. 10, n. 1, 23 fev. 2022.

NUNES, D.; MARQUES, A. Inteligência artificial e Direito Processual: vieses algorítmicos e os riscos de atribuição de função decisória às máquinas = Artificial intelligence and Procedural Law: algorithmic bias and the risks of assignment of decision-making function to machines. Disponível em: <https://oasisbr.ibict.br/vufind/Record/STJ-1_27ad28a4f877422391dcf59d93072996>. Acesso em: 3 set. 2024.

PENETRA, S. L. S. et al. Post-acute COVID-19 syndrome after reinfection and vaccine breakthrough by the SARS-CoV-2 Gamma variant in Brazil. International Journal of Infectious Diseases, v. 114, p. 58–61, jan. 2022.

PU, J. et al. Any unique image biomarkers associated with COVID-19? European Radiology, v. 30, n. 11, p. 6221–6227, 20 jul. 2020.

RANGARAJAN, K. et al. Artificial Intelligence–assisted chest X-ray assessment scheme for COVID-19. European Radiology, 20 jan. 2021.

RAZA, S. Artificial intelligence for genomic medicine - PHG Foundation. Disponível em: <https://www.phgfoundation.org/publications/reports/artificial-intelligence-for-genomic-medicine/>. Acesso em: 3 set. 2024.

ROTHE, C. et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. New England Journal of Medicine, v. 382, n. 10, 30 jan. 2020.

RUSSELL, S.; NORVIG, P. Artificial Intelligence A Modern Approach Third Edition. [s.l: s.n.]. Disponível em: <https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf>.

SANTOS, A. J. DOS et al. Inteligência artificial e COVID-19. Construção de conhecimento no curso da pandemia de COVID-19: aspectos biomédicos, clínico-assistenciais, epidemiológicos e sociais, 2020.

SARTOR, S. et al. Association between obesity and hospitalization in mild COVID-19 adult outpatients in Brazil: a prospective cohort study. Archives of Endocrinology and Metabolism, v. 66, n. 4, p. 512–521, 1 jan. 2022.

SHARMA, A.; AHMAD FAROUK, I.; LAL, S. K. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses, v. 13, n. 2, p. 202, 29 jan. 2021.

SHIRI, I. et al. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network. European Radiology, v. 31, n. 3, p. 1420–1431, 3 set. 2020.

SIMOLINI, A. V. et al. FATORES DE RISCO E ADOECIMENTO PSÍQUICO EM ESTUDANTES UNIVERSITÁRIOS DURANTE A PANDEMIA POR CORONAVÍRUS. Cadernos Cajuína, v. 9, n. 2, p. e249223–e249223, 2 maio 2024. Disponível em: https://doi.org/10.52641/cadcajv9i2.222

STEHMAN, S. V. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment, v. 62, n. 1, p. 77–89, out. 1997.

SYED, H. H. et al. A Rapid Artificial Intelligence-Based Computer-Aided Diagnosis System for COVID-19 Classification from CT Images. Behavioural Neurology, v. 2021, p. 1–13, 27 dez. 2021.

TAN, C. et al. A Survey on Deep Transfer Learning. Artificial Neural Networks and Machine Learning – ICANN 2018, p. 270–279, 2018.

VARGA, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet, v. 395, n. 10234, 21 abr. 2020.

WAN, Y. et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. Journal of Virology, v. 94, n. 7, 29 jan. 2020.

WANG, H. et al. Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures. European Journal of Nuclear Medicine and Molecular Imaging, v. 48, n. 5, p. 1478–1486, 1 maio 2021.

WEISS, S.; NAVAS-MARTIN, S. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/16339739/>.

WIERSINGA, W. J. et al. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA, v. 324, n. 8, p. 782–793, 10 jul. 2020.

WORLD HEALTH ORGANIZATION. Coronavirus Disease (COVID-19) Pandemic. Disponível em: <https://www.who.int/emergencies/diseases/novel-coronavirus-2019>.

WU, F. et al. A new coronavirus associated with human respiratory disease in China. Nature, v. 579, n. 7798, p. 265–269, 3 fev. 2020.

ZHU, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, v. 382, n. 8, 24 jan. 2020.2, 1987.

Downloads

Publicado

2024-09-22

Como Citar

Rossetto, M. V., Sartor, I., & Silva, S. de A. e. (2024). Mineração de dados: o papel da IA durante a pandemia da COVID-19. Cadernos Cajuína, 9(5), e249526. https://doi.org/10.52641/cadcajv9i5.608

Edição

Seção

Artigos Interdisciplinares